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Sketch

Constrained knots K:

(1, 1) knots in L(p, q�1);

generalization of 2-bridge knots b(u, v);

parameterized by C(p, q, l, u, v) (Y. ’20);

have a complete classification (Main theorem, Y. ’20);

whose \HFK and KHI are determined by Alexander polynomial, Moreover,
\HFK(K) ⇠= KHI(K) (Li and Y. ’20, ’21, Baldwin, Li, and Y. ’20);

whose complements include many simple hyperbolic manifolds (Y. ’20).
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(g, b) knots

Definition

A knot K ⇢ Y is a (g, b) (g-genus b-bridge) knot if Y admits a Heegaard
splitting Y = H1 [⌃g H2 such that K \Hi consists of b trivial arcs.

Remark

Arcs t1, . . . , tb are trivial in H if there exist disks D1, . . . , Db ⇢ H such that
@Di = ti [ ⌘i, ⌘i ⇢ @H, and Di \ tj = ; for i 6= j.

Note: (g, b) knots are also
(g + 1, b� 1) knots.
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2-bridge knots

(0, 2) knots are called 2-bridge knots (also rational knots),
denoted by b(a, b), where a is odd, b 2 Z, and gcd(a, b) = 1.

Expand b/a as continued fraction:
b

a
= 1

a1� 1
a2�···
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2
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2-bridge knots

Proposition (Classification, Schubert ’56)

2-bridge knots b(a1, b1) and b(a2, b2) are equivalent if and only if

a1 = a2 = a and b1 ⌘ b
±1
2 (mod a).

b(a,�b) is the mirror knot of b(a, b).

Remark

The double branched cover over b(a, b) is the lens space L(a, b).
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2-bridge knots

A 2-bridge knot b(a, b) admits another canonical presentation known as the
Schubert normal form.
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2-bridge knots

A doubly-pointed Heegaard diagram (⌃,↵,�, z, w) defines a knot K. Let
⌘ ⇢ ⌃� ↵ and � ⇢ ⌃� � be arcs connecting z and w. Push ⌘ into ↵-handlebody
to obtain ⌘0. Similarly define �0 in �-handlebody. Define K = ⌘

0 [ �0.
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(1, 1) knots

Definition

A (1, 1) knot has a doubly-pointed Heegaad diagram (⌃,↵,�, z, w) with ⌃ ⇠= T
2,

called a (1, 1) diagram.

Remark

The ambient 3-manifold Y of a (1, 1) knot is either S3, a lens space L(p, q), or
S
1 ⇥ S

2. In this talk, we only consider Y = S
3 or Y = L(p, q).
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(1, 1) knots

Proposition (Parameterization, Goda, Matsuda, and Morifuji ’05)

(1, 1) diagrams are parameterized by p, q, r, s 2 N with 2q + r  p and s < p.

Not good parameterization:
figure-8 knot: (5, 2, 1, 3) (5, 2, 1, 0)
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(1, 1) knots

Fact

For a > 2b > 0, the 2-bridge knot b(a, b) is the (1, 1) knot (a, b, a� 2b, 0).
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Constrained knots

Theorem (Parameterization, Y. ’20)

Any constrained knot can be represented by C(p, q, l, u, v), where p > 0,
q 2 [1, p� 1], l 2 [1, p], u > 0, v 2 [0, u� 1], u is odd, gcd(p, q) = gcd(u, v) = 1.

Theorem (Classification, Y. ’20)

For Ki = C(pi, qi, li, ui, vi)(i = 1, 2) with pi > 0, li > 1 and ui > 2vi > 0, they
represent the same knot if and only if

p1 = p2 = p, q1q2 ⌘ 1 (mod p),

l1, l2 2 {2, p}, (l1, u1, v1) = (l2, u2, v2).
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Constrained knots

For a lens space L(p, q�1), let ↵0 and �0 be two curves on T
2 with slopes 0 and

p/q
�1. Let ↵1 = ↵0 and let �1 be a curve with �1 \ �0 = ;. Set

z, w 2 T
2 � ↵0 [ �0 [ �1. Define a constrained knot by (T 2

,↵1,�1, z, w).
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Constrained knots

Cut the diagram along �0 and glue along ↵0:
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Constrained knots

Theorem (Parameterization, Y. ’20)

Any constrained knot can be represented by C(p, q, l, u, v), where p > 0,
q 2 [1, p� 1], l 2 [1, p], u > 0, v 2 [0, u� 1], u is odd, gcd(p, q) = gcd(u, v) = 1.

C(5, 3, 2, 3, 1).
p = 5 = number of domains

q = 3 : D1 ! D1+q

l = 2 : z 2 D1, w 2 Dl

u = 3 = |�1 \ {subarc of ↵1}|
v = 1 = number of rainbows
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Constrained knots

Theorem (Classification, Y. ’20)

For Ki = C(pi, qi, li, ui, vi)(i = 1, 2) with pi > 0, li > 1 and ui > 2vi > 0, they
represent the same knot if and only if

p1 = p2 = p, q1q2 ⌘ 1 (mod p),

l1, l2 2 {2, p}, (l1, u1, v1) = (l2, u2, v2).

Remark

The red conditions can be explained by the following facts.
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Constrained knots

Fact

C(1, 0, 1, u, v) is the 2-bridge knot b(u, v);

C(p, q, l, 1, 0) consists of simple knots in lens spaces studied by Rasmussen,
Hedden, et al. (related to Berge’s conjecture).
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Constrained knots

Fact

C(1, 0, 1, u, v) is the 2-bridge knot b(u, v);

C(p, q, l, 1, 0) consists of simple knots;

C(p, q, 1, u, v) is a connected sum of a 2-bridge knot and a core knot in a
lens space.
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Constrained knots

Fact

C(1, 0, 1, u, v) is the 2-bridge knot b(u, v);

C(p, q, l, 1, 0) consists of simple knots;

C(p, q, 1, u, v) is a connected sum of a 2-bridge knot and a core knot in a
lens space;

C(p,�q, l, u,�v) is the mirror knot of C(p, q, l, u, v).

Remark

We only need to consider (p, q) 6= (1, 0), (u, v) 6= (1, 0), l 6= 1, u > 2v > 0.
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Constrained knots

Theorem (Classification, Y. ’20)

For Ki = C(pi, qi, li, ui, vi)(i = 1, 2) with pi > 0, li > 1 and ui > 2vi > 0, they
represent the same knot if and only if

p1 = p2 = p, q1q2 ⌘ 1 (mod p),

l1, l2 2 {2, p}, (l1, u1, v1) = (l2, u2, v2).

Remark

C(5, 3, l, 3, 1) ⇠= C(5, 2, l, 3, 1) for l = 2, 5;

C(5, 3, l, 3, 1) 6⇠= C(5, 2, l, 3, 1) for l = 3, 4;

There is no known classification of (1, 1) knots.
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Constrained knots

Idea of necessary part: compute knot Floer homology \HFK defined by Oszváth
and Szabó, Rasmussen. For K = C(p, q, l, u, v) 2 Y = L(p, q�1),

\HFK(Y,K) =
M

s2Spinc(Y )

\HFK(Y,K, s) ⇠= Z|↵1\�1|.

\HFK(Y,K, s) ⇠=(
\HFK(b(u, v))
\HFK(b(u� 2v, v))

.
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Constrained knots

Theorem (Oszváth and Szabó ’03)

For any alternating knot K ⇢ S
3, \HFK(K) (with mod 2 Maslov grading and

Alexander grading) is determined by its Alexander polynomial �K(t).

Remark

For an alternating knot K, coe�cients of �K(t) are alternating. Hence

|�K(�1)| = u for K = b(u, v).
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Constrained knots

Summary

Compare |�Ki(�1)|. We have u1 = u2, u1 � 2v1 = u2 � 2v2;

Compare numbers of spinc structures with |�Ki(�1)| = u. We have l1 = l2;

Remain to compare K1 = C(p, q, l, u, v) and K2 = C(p, q�1
, l, u, v).

Remark

[Ki] 6= 0 2 H1(L(p, q�1);Z) ⇠= Zp;

For p prime, compare [K1] and [K2]. We have l 2 {2, p}.
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Constrained knots

Idea of su�cient part: construct an isomorphism of ⇡1(Y �N(Ki)).

Theorem (Waldhausen ’68)

Suppose Mi(i = 1, 2) are Haken manifolds that are knot complements of Ki. If
there is an isomorphism  : ⇡1(M1) ! ⇡1(M2) that sends meridian to meridian,
longitude to longitude, then K1 and K2 are equivalent.
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Instanton knot homology

For a knot K in a 3-manifold Y with [K] = 0 2 H1(Y ;Q), Kronheimer and
Mrowka define a vector space KHI(Y,K) over C called instanton knot
homology. The definition is based on sutured manifolds studied by Gabai,
Juhász, et al. For gradings, Kronheimer and Mrowka, and then Zhenkun Li, study
the Z� Z2 grading on KHI by Seifert surface of K. Baldwin and Sivek study
the naturality of KHI.

Conjecture (Kronheimer and Mrowka ’10)

For a knot K in a 3-manifold Y with [K] = 0 2 H1(Y ;Q), we have

KHI(Y,K) ⇠= \HFK(Y,K)⌦ C.
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Instanton knot homology

Theorem (Oszváth and Szabó ’04 for \HFK, Lim ’09, Kronheimer and

Mrowka ’10 for KHI)

For a knot K in S
3, graded Euler characteristics �(\HFK(K)) and �(KHI(K))

both equal to the Alexander polynomial �K(t) (up to sign).

Remark

From the grading, we have KHI(Y,K) =
L

i2Z2,j2ZKHIi(Y,K, j). The graded
Euler characteristic �(KHI(Y,K)) is defined by

X

j2Z
(dimKHI0(Y,K, j)� dimKHI1(Y,K, j)) · tj .
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Instanton knot homology

Theorem (Li and Y. ’21)

For a knot K in a 3-manifold Y with TorsH1(Y �N(K),Z) = 0, we have

�(KHI(Y,K)) = �(\HFK(Y,K)) (up to sign).

Remark

By work of Friedl, Juhász, and Rasmussen, the right hand can be calculated
by ⇡1(Y �N(K)) (related to Turaev torsion).

The homology condition is because KHI doesn’t have a decomposition with
respect to torsion spinc structures.
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Instanton knot homology

�(KHI(Y,K)) provides a lower bound of dimKHI(Y,K). For the upper bound,
we have the following theorem.

Theorem (Li and Y. ’20, Baldwin, Li, and Y. ’20)

For a (1, 1) knot K in Y = S
3 or Y = L(p, q), we have

dimKHI(Y,K)  dim \HFK(Y,K).

Remark

In general, we show dimKHI(Y,K)  dim\CFK(Y,K). For (1, 1) knots,

dim \HFK(Y,K) = dim\CFK(Y,K) = |↵ \ �|.
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Instanton knot homology

For any constrained knot K ⇢ Y with H1(Y �N(K),Z) ⇠= Z, we know
\HFK(Y,K) is totally determined by �K(t).

Corollary

For a constrained knot K with H1(Y �N(K),Z) ⇠= Z, we have

dimKHI(Y,K) = dim \HFK(Y,K).

Remark

For K ⇢ Y = L(p, q), we have H1(Y �N(K),Z) ⇠= Z� Zd for d | p.
In progress: remove the homology condition.
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Instanton knot homology

Definition

A rational homology sphere Y is called an L-space if

dim dHF (Y ) = |H1(Y ;Z)|.

This is a generalization of lens spaces. A knot K ⇢ Y is called an L-space knot if
a Dehn surgery on K gives another L-space.

Theorem (Oszváth and Szabó ’05 for Y = S
3
, J. Rasmussen and S. D.

Rasmussen ’17 for general Y )

For any L-space knot K in Y with H1(Y �N(K),Z) ⇠= Z, we know \HFK(Y,K)
is determined by the Alexander polynomial �K(t).
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Instanton knot homology

Corollary

For a (1, 1) L-space knot K in S
3 or L(p, q), if H1(Y �N(K),Z) ⇠= Z,

dimKHI(Y,K) = dim \HFK(Y,K).

Remark

Torus knots admit lens spaces surgeries (Moser). Torus knots are (1, 1) knots.
Hence the dimension equation holds for any torus knot.
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Instanton knot homology

Greene, Lewallen, and Vafaee provide a graphical way to check if a (1, 1) knot is
an L-space knot.

Recently, Zipei Nie gives a braid diagram of (1, 1) L-space knot in S
3 based on

the above work.
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hyperbolic manifolds

Consider orientable hyperbolic manifold M with @M = T
2. Snappy program

provides a list of simple hyperbolic manifolds (with at most 9 ideal tetrahedra).

Based on Dunfield’s census of exceptional fillings, we can verify 21922 (in 59068)
manifolds are complements of constrained knots. The full list can be found at
https://doi.org/10.7910/DVN/GLFLHI or my homepage faniel.wiki/about/.
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hyperbolic manifolds

Name Slope+(p, q, l, u, v)
m003 (1, 0) + (10, 3, 3, 1, 0), (�1, 1) + (5, 4, 5, 3, 1), (0, 1) + (5, 4, 5, 3, 1)
m004 (1, 0) + (1, 0, 1, 5, 2)
m006 (0, 1) + (15, 4, 2, 1, 0), (1, 0) + (5, 3, 4, 3, 1)
m007 (1, 0) + (3, 1, 2, 3, 1)
m009 (1, 0) + (2, 1, 2, 5, 2)
m010 (1, 0) + (6, 5, 6, 3, 1)
m011 (1, 0) + (13, 3, 3, 1, 0), (0, 1) + (9, 4, 9, 3, 1)
m015 (1, 0) + (1, 0, 1, 7, 2)
m016 (0, 1) + (18, 5, 3, 1, 0), (�1, 1) + (19, 7, 2, 1, 0)
m017 (0, 1) + (14, 3, 5, 1, 0), (�1, 1) + (21, 8, 21, 1, 0), (1, 0) + (7, 5, 6, 3, 1)
m019 (0, 1) + (17, 5, 4, 1, 0), (1, 1) + (11, 7, 11, 3, 1), (1, 0) + (6, 5, 5, 3, 1)
· · · · · ·
m130 (1, 0) + (16, 3, 6, 1, 0), (0, 1) + (16, 7, 16, 3, 1)
m135 Not from any constrained knot
· · · · · ·

Fan Ye (Cambridge) Constrained knots in lens spaces 2021 37 / 39

NO

mo05
hot
orientable .



hyperbolic manifolds

Suppose K = C(p, q, l, u, v) ⇢ Y and M = Y � intN(K). Recall that if l = 1,
then K is a connected sum of a 2-bridge knot and a core knot of a lens space.
Hence M is not hyperbolic.

Theorem (Y. 20)

If M is Seifert fibered (hence not hyperbolic), then v = ±1.

Conjecture (Y. 20)

If l > 1 and v 6= ±1, then M is hyperbolic.

Remark

This conjecture holds for p  10, u < 20 by calculations based on SnapPy.
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Constrained knots in lens spaces

Thanks for your attention.
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