Constrained knots in lens spaces

Fan Ye

University of Cambridge

Fan Ye (Cambridge)

Constrained knots in lens spaces

21 1/39

э

- (1,1) knots in $L(p,q^{-1})$;
- generalization of 2-bridge knots $\mathfrak{b}(u, v)$;
- parameterized by C(p,q,l,u,v) (Y. '20);
- have a complete classification (Main theorem, Y. '20);
- whose \widehat{HFK} and KHI are determined by Alexander polynomial, Moreover, $\widehat{HFK}(K) \cong KHI(K)$ (Li and Y. '20, '21, Baldwin, Li, and Y. '20);
- whose complements include many simple hyperbolic manifolds (Y. '20).

1 Preliminaries: 2-bridge knots and (1,1) knots

2 Constrained knots: parameterization and classification

3 More properties: instanton knot homology, hyperbolic manifolds

Fan Ye (Cambridge)

1 Preliminaries: 2-bridge knots and (1,1) knots

2 Constrained knots: parameterization and classification

More properties: instanton knot homology, hyperbolic manifolds

(g,b) knots

Definition

A knot $K \subset Y$ is a (g, b) (g-genus b-bridge) knot if Y admits a Heegaard splitting $Y = H_1 \cup_{\Sigma_q} H_2$ such that $K \cap H_i$ consists of b trivial arcs.

Remark

Arcs t_1, \ldots, t_b are trivial in H if there exist disks $D_1, \ldots, D_b \subset H$ such that $\partial D_i = t_i \cup \eta_i, \eta_i \subset \partial H$, and $D_i \cap t_j = \emptyset$ for $i \neq j$.

Note: (g, b) knots are also (g+1, b-1) knots.

2-bridge knots

(0,2) knots are called **2-bridge knots** (also rational knots), denoted by $\mathfrak{b}(a,b)$, where a is odd, $b \in \mathbb{Z}$, and gcd(a,b) = 1.

Fan Ye (Cambridge)

Proposition (Classification, Schubert '56)

ullet 2-bridge knots $\mathfrak{b}(a_1,b_1)$ and $\mathfrak{b}(a_2,b_2)$ are equivalent if and only if

$$a_1 = a_2 = a \text{ and } b_1 \equiv b_2^{\pm 1} \pmod{a}.$$

•
$$\mathfrak{b}(a,-b)$$
 is the mirror knot of $\mathfrak{b}(a,b)$.

Remark

The double branched cover over $\mathfrak{b}(a,b)$ is the lens space L(a,b).

2-bridge knots

A 2-bridge knot $\mathfrak{b}(a, b)$ admits another canonical presentation known as the Schubert normal form.

2-bridge knots

A doubly-pointed Heegaard diagram $(\Sigma, \alpha, \beta, z, w)$ defines a knot K. Let $\eta \subset \Sigma - \alpha$ and $\delta \subset \Sigma - \beta$ be arcs connecting z and w. Push η into α -handlebody to obtain η' . Similarly define δ' in β -handlebody. Define $K = \eta' \cup \delta'$.

Definition

A (1,1) knot has a doubly-pointed Heegaad diagram $(\Sigma, \alpha, \beta, z, w)$ with $\Sigma \cong T^2$, called a (1,1) diagram.

Remark

The ambient 3-manifold Y of a (1,1) knot is either S^3 , a lens space L(p,q), or $S^1 \times S^2$. In this talk, we only consider $Y = S^3$ or Y = L(p,q).

(1,1) knots

Proposition (Parameterization, Goda, Matsuda, and Morifuji '05)

(1,1) diagrams are parameterized by $p,q,r,s \in \mathbb{N}$ with $2q+r \leq p$ and s < p.

(1,1) knots

Fact

For a > 2b > 0, the 2-bridge knot $\mathfrak{b}(a, b)$ is the (1, 1) knot (a, b, a - 2b, 0).

D Preliminaries: 2-bridge knots and (1,1) knots

2 Constrained knots: parameterization and classification

More properties: instanton knot homology, hyperbolic manifolds

Fan Ye (Cambridge)

Constrained knots in lens spaces

1 13/39

Theorem (Parameterization, Y. '20)

Any constrained knot can be represented by C(p,q,l,u,v), where p > 0, $q \in [1, p-1], l \in [1, p], u > 0, v \in [0, u-1]$, u is odd, gcd(p,q) = gcd(u,v) = 1.

Theorem (Classification, Y. '20)

For $K_i = C(p_i, q_i, l_i, u_i, v_i)$ (i = 1, 2) with $p_i > 0, l_i > 1$ and $u_i > 2v_i > 0$, they represent the same knot if and only if

$$p_1 = p_2 = p, \quad q_1q_2 \equiv 1 \pmod{p},$$

 $l_1, l_2 \in \{2, p\}, \quad (l_1, u_1, v_1) = (l_2, u_2, v_2).$

For a lens space $L(p,q^{-1})$, let α_0 and β_0 be two curves on T^2 with slopes 0 and p/q^{-1} . Let $\alpha_1 = \alpha_0$ and let β_1 be a curve with $\beta_1 \cap \beta_0 = \emptyset$. Set $z, w \in T^2 - \alpha_0 \cup \beta_0 \cup \beta_1$. Define a constrained knot by $(T^2, \alpha_1, \beta_1, z, w)$.

021 16 / 39

Theorem (Parameterization, Y. '20)

Any constrained knot can be represented by C(p,q,l,u,v), where p > 0, $q \in [1, p-1], l \in [1, p], u > 0, v \in [0, u-1]$, u is odd, gcd(p,q) = gcd(u,v) = 1.

C(5, 3, 2, 3, 1). p = 5 = number of domains $q = 3: D_1 \rightarrow D_{1+q}$ $l = 2: z \in D_1, w \in D_l$ $u = 3 = |\beta_1 \cap \{\text{subarc of } \alpha_1\}|$ v = 1 = number of rainbows

Theorem (Classification, Y. '20)

For $K_i = C(p_i, q_i, l_i, u_i, v_i)$ (i = 1, 2) with $p_i > 0, l_i > 1$ and $u_i > 2v_i > 0$, they represent the same knot if and only if

$$p_1 = p_2 = p, \quad q_1 q_2 \equiv 1 \pmod{p},$$

$$l_1, l_2 \in \{2, p\}, \quad (l_1, u_1, v_1) = (l_2, u_2, v_2).$$

Remark

The red conditions can be explained by the following facts.

(p, q)

- C(1, 0, 1, u, v) is the 2-bridge knot $\mathfrak{b}(u, v)$;
- C(p,q,l,1,0) consists of simple knots in lens spaces studied by Rasmussen, Hedden, *et al.* (related to Berge's conjecture).

Fact

- C(1,0,1,u,v) is the 2-bridge knot $\mathfrak{b}(u,v)$;
- C(p,q,l,1,0) consists of simple knots;
- C(p,q,1,u,v) is a connected sum of a 2-bridge knot and a core knot in a lens space.

Constrained knots in lens spaces

Fact

- C(1,0,1,u,v) is the 2-bridge knot $\mathfrak{b}(u,v)$;
- C(p,q,l,1,0) consists of simple knots;
- C(p,q,1,u,v) is a connected sum of a 2-bridge knot and a core knot in a lens space;
- C(p, -q, l, u, -v) is the mirror knot of C(p, q, l, u, v).

Remark

We only need to consider $(p,q) \neq (1,0), (u,v) \neq (1,0), l \neq 1, u > 2v > 0.$

Theorem (Classification, Y. '20)

For $K_i = C(p_i, q_i, l_i, u_i, v_i)$ (i = 1, 2) with $p_i > 0, l_i > 1$ and $u_i > 2v_i > 0$, they represent the same knot if and only if

$$p_1 = p_2 = p, \quad q_1 q_2 \equiv 1 \pmod{p},$$

$$l_1, l_2 \in \{2, p\}, \quad (l_1, u_1, v_1) = (l_2, u_2, v_2).$$

Remark

- $C(5,3,l,3,1) \cong C(5,2,l,3,1)$ for l = 2,5;
- $C(5,3,l,3,1) \not\cong C(5,2,l,3,1)$ for l = 3,4;
- There is no known classification of (1,1) knots.

ldea of necessary part: compute knot Floer homology \widehat{HFK} defined by Oszváth and Szabó, Rasmussen. For $K = C(p,q,l,u,v) \in Y = L(p,q^{-1})$,

Theorem (Oszváth and Szabó '03)

For any alternating knot $K \subset S^3$, $\widehat{HFK}(K)$ (with mod 2 Maslov grading and Alexander grading) is determined by its Alexander polynomial $\Delta_K(t)$.

Remark

For an alternating knot K, coefficients of $\Delta_K(t)$ are alternating. Hence

 $|\Delta_K(-1)| = u$ for $K = \mathfrak{b}(u, v)$.

Summary

- Compare $|\Delta_{K_i}(-1)|$. We have $u_1 = u_2, u_1 2v_1 = u_2 2v_2;$
- Compare numbers of spin^c structures with $|\Delta_{K_i}(-1)| = u$. We have $l_1 = l_2$;
- Remain to compare $K_1 = C(p, q, l, u, v)$ and $K_2 = C(p, q^{-1}, l, u, v)$.

Remark

•
$$[K_i] \neq 0 \in H_1(L(p, q^{-1}); \mathbb{Z}) \cong \mathbb{Z}_p;$$

• For p prime, compare $[K_1]$ and $[K_2]$. We have $l \in \{2, p\}$.

- ∢ ⊒ → ---

Idea of sufficient part: construct an isomorphism of $\pi_1(Y - N(K_i))$.

Theorem (Waldhausen '68)

Suppose $M_i(i = 1, 2)$ are Haken manifolds that are knot complements of K_i . If there is an isomorphism $\psi : \pi_1(M_1) \to \pi_1(M_2)$ that sends meridian to meridian, longitude to longitude, then K_1 and K_2 are equivalent.

m 1 Preliminaries: 2-bridge knots and (1,1) knots

2) Constrained knots: parameterization and classification

3 More properties: instanton knot homology, hyperbolic manifolds

Fan Ye (Cambridge)

Constrained knots in lens spaces

Instanton knot homology

For a knot K in a 3-manifold Y with $[K] = 0 \in H_1(Y; \mathbb{Q})$, Kronheimer and Mrowka define a vector space KHI(Y, K) over \mathbb{C} called **instanton knot homology**. The definition is based on sutured manifolds studied by Gabai, Juhász, *et al.* For gradings, Kronheimer and Mrowka, and then Zhenkun Li, study the $\mathbb{Z} \oplus \mathbb{Z}_2$ grading on KHI by Seifert surface of K. Baldwin and Sivek study the naturality of KHI.

Conjecture (Kronheimer and Mrowka '10)

For a knot K in a 3-manifold Y with $[K] = 0 \in H_1(Y; \mathbb{Q})$, we have

 $KHI(Y,K) \cong \widehat{HFK}(Y,K) \otimes \mathbb{C}.$

Theorem (Oszváth and Szabó '04 for \widehat{HFK} , Lim '09, Kronheimer and Mrowka '10 for KHI)

For a knot K in S^3 , graded Euler characteristics $\chi(\widehat{HFK}(K))$ and $\chi(KHI(K))$ both equal to the Alexander polynomial $\Delta_K(t)$ (up to sign).

Remark

From the grading, we have $KHI(Y,K) = \bigoplus_{i \in \mathbb{Z}_2, j \in \mathbb{Z}} KHI_i(Y,K,j)$. The graded Euler characteristic $\chi(KHI(Y,K))$ is defined by

$$\sum_{j \in \mathbb{Z}} (\dim KHI_0(Y, K, j) - \dim KHI_1(Y, K, j)) \cdot t^j.$$

Theorem (Li and Y. '21)

For a knot K in a 3-manifold Y with $TorsH_1(Y - N(K), \mathbb{Z}) = 0$, we have

$$\chi(KHI(Y,K)) = \chi(\widehat{HFK}(Y,K))$$
 (up to sign).

Remark

- By work of Friedl, Juhász, and Rasmussen, the right hand can be calculated by $\pi_1(Y N(K))$ (related to Turaev torsion).
- The homology condition is because *KHI* doesn't have a decomposition with respect to torsion spin^c structures.

 $\chi(KHI(Y,K))$ provides a lower bound of dim KHI(Y,K). For the upper bound, we have the following theorem.

Theorem (Li and Y. '20, Baldwin, Li, and Y. '20)
For a
$$(1,1)$$
 knot K in $Y = S^3$ or $Y = L(p,q)$, we have
 $\begin{array}{c} & & \\ & &$

Remark

In general, we show $\dim KHI(Y,K) \leq \dim \widehat{CFK}(Y,K)$. For (1,1) knots,

$$\dim \widehat{HFK}(Y,K) = \dim \widehat{CFK}(Y,K) = |\alpha \cap \beta|.$$

For any constrained knot $K \subset Y$ with $H_1(Y - N(K), \mathbb{Z}) \cong \mathbb{Z}$, we know $\widehat{HFK}(Y, K)$ is totally determined by $\Delta_K(t)$.

Corollary

For a constrained knot K with $H_1(Y - N(K), \mathbb{Z}) \cong \mathbb{Z}$, we have

$$\dim KHI(Y,K) = \dim \widehat{HFK}(Y,K).$$

Remark

For $K \subset Y = L(p,q)$, we have $H_1(Y - N(K), \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}_d$ for $d \mid p$. In progress: remove the homology condition.

Definition

A rational homology sphere \boldsymbol{Y} is called an L-space if

$$\dim \widehat{HF}(Y) = |H_1(Y;\mathbb{Z})|.$$

This is a generalization of lens spaces. A knot $K \subset Y$ is called an L-space knot if a Dehn surgery on K gives another L-space.

Theorem (Oszváth and Szabó '05 for $Y = S^3$, J. Rasmussen and S. D. Rasmussen '17 for general Y)

For any L-space knot K in Y with $H_1(Y - N(K), \mathbb{Z}) \cong \mathbb{Z}$, we know $\widehat{HFK}(Y, K)$ is determined by the Alexander polynomial $\Delta_K(t)$.

Corollary

For a
$$(1,1)$$
 L-space knot K in S^3 or $L(p,q),$ if $H_1(Y-N(K),\mathbb{Z})\cong\mathbb{Z},$

$$\dim KHI(Y, K) = \dim \widehat{HFK}(Y, K).$$

Remark

Torus knots admit lens spaces surgeries (Moser). Torus knots are (1,1) knots. Hence the dimension equation holds for any torus knot.

Instanton knot homology

Greene, Lewallen, and Vafaee provide a graphical way to check if a (1,1) knot is an L-space knot.

Recently, Zipei Nie gives a braid diagram of (1,1) L-space knot in S^3 based on the above work.

Consider orientable hyperbolic manifold M with $\partial M = T^2$. **Snappy** program provides a list of simple hyperbolic manifolds (with at most 9 ideal tetrahedra). $(\bigcap \mathcal{A}\mathcal{G})$ Based on Dunfield's census of exceptional fillings, we can verify 21922 (in 59068) manifolds are complements of constrained knots. The full list can be found at https://doi.org/10.7910/DVN/GLFLHI or my homepage faniel.wiki/about/.

hyperbolic manifolds

NI	
Name	Slope+(p,q,l,u,v)
m003	(1,0) + (10,3,3,1,0), (-1,1) + (5,4,5,3,1), (0,1) + (5,4,5,3,1)
m004	(1,0) + (1,0,1,5,2)
5 m006	(0,1) + (15,4,2,1,0), (1,0) + (5,3,4,3,1)
m007	(1,0) + (3,1,2,3,1)
m^{009}	(1,0) + (2,1,2,5,2)
m010	(1,0)+(6,5,6,3,1)
m011	(1,0) + (13,3,3,1,0), (0,1) + (9,4,9,3,1)
m015	(1,0) + (1,0,1,7,2)
m016	(0,1) + (18,5,3,1,0), (-1,1) + (19,7,2,1,0)
m017	(0,1) + (14,3,5,1,0), (-1,1) + (21,8,21,1,0), (1,0) + (7,5,6,3,1)
m019	(0,1) + (17,5,4,1,0), (1,1) + (11,7,11,3,1), (1,0) + (6,5,5,3,1)
m130	(1,0) + (16,3,6,1,0), (0,1) + (16,7,16,3,1)
m135	Not from any constrained knot
	m004 m006 m007 m009 m010 m011 m015 m016 m017 m019 \dots m130

э

メロト メポト メヨト メヨ

Suppose $K = C(p, q, l, u, v) \subset Y$ and $M = Y - \operatorname{int} N(K)$. Recall that if l = 1, then K is a connected sum of a 2-bridge knot and a core knot of a lens space. Hence M is not hyperbolic.

Theorem (Y. 20)

If M is Seifert fibered (hence not hyperbolic), then $v = \pm 1$.

Conjecture (Y. 20)

If l > 1 and $v \neq \pm 1$, then M is hyperbolic.

Remark

This conjecture holds for $p \leq 10, u < 20$ by calculations based on SnapPy.

Thanks for your attention.

Fan Ye (Cambridge)

Constrained knots in lens spaces

)21 39/39