Constrained knots in lens spaces

Fan Ye
University of Cambridge

Sketch

Constrained knots K :

- $(1,1)$ knots in $L\left(p, q^{-1}\right)$;
- generalization of 2-bridge knots $\mathfrak{b}(u, v)$;
- parameterized by $C(p, q, l, u, v)$ (Y. '20);
- have a complete classification (Main theorem, Y. '20);
- whose $\widehat{H F K}$ and $K H I$ are determined by Alexander polynomial, Moreover, $\widehat{H F K}(K) \cong K H I(K)$ (Li and Y . '20, '21, Baldwin, Li, and Y . '20);
- whose complements include many simple hyperbolic manifolds (Y. '20).

Table of Contents

(1) Preliminaries: 2-bridge knots and $(1,1)$ knots
(2) Constrained knots: parameterization and classification
(3) More properties: instanton knot homology, hyperbolic manifolds

Table of Contents

(1) Preliminaries: 2-bridge knots and $(1,1)$ knots
(2) Constrained knots: parameterization and classification
(3) More properties: instanton knot homology, hyperbolic manifolds

(g, b) knots

Definition

A knot $K \subset Y$ is a (g, b) (g-genus b-bridge) knot if Y admits a Heegaard splitting $Y=H_{1} \cup_{\Sigma_{g}} H_{2}$ such that $K \cap H_{i}$ consists of b trivial arcs.

Remark

Arcs t_{1}, \ldots, t_{b} are trivial in H if there exist disks $D_{1}, \ldots, D_{b} \subset H$ such that $\partial D_{i}=t_{i} \cup \eta_{i}, \eta_{i} \subset \partial H$, and $D_{i} \cap t_{j}=\emptyset$ for $i \neq j$.

Note: (g, b) knots are also ($g+1, b-1$) knots.

2-bridge knots

$(0,2)$ knots are called 2-bridge knots (also rational knots), denoted by $\mathfrak{b}(a, b)$, where a is odd, $b \in \mathbb{Z}$, and $\operatorname{gcd}(a, b)=1$.

Expand b / a as continued fraction:
$\frac{b}{a}=\frac{1}{a_{1}-\frac{1}{a_{2}-\cdots}}$

2-bridge knots

Proposition (Classification, Schubert '56)

- 2-bridge knots $\mathfrak{b}\left(a_{1}, b_{1}\right)$ and $\mathfrak{b}\left(a_{2}, b_{2}\right)$ are equivalent if and only if

$$
a_{1}=a_{2}=a \quad \text { and } \quad b_{1} \equiv b_{2}^{ \pm 1} \quad(\bmod a)
$$

- $\mathfrak{b}(a,-b)$ is the mirror knot of $\mathfrak{b}(a, b)$.

Remark

The double branched cover over $\mathfrak{b}(a, b)$ is the lens space $L(a, b)$.

2-bridge knots

A 2-bridge knot $\mathfrak{b}(a, b)$ admits another canonical presentation known as the Schubert normal form. $\quad b(3,1)$

2-bridge knots

A doubly-pointed Heegaard diagram $(\Sigma, \alpha, \beta, z, w)$ defines a knot K. Let $\eta \subset \Sigma-\alpha$ and $\delta \subset \Sigma-\beta$ be arcs connecting z and w. Push η into α-handlebody to obtain η^{\prime}. Similarly define δ^{\prime} in β-handlebody. Define $K=\eta^{\prime} \cup \delta^{\prime}$.

$(1,1)$ knots

Definition

A $(1,1)$ knot has a doubly-pointed Heegaad diagram $(\Sigma, \alpha, \beta, z, w)$ with $\Sigma \cong T^{2}$, called a $(1,1)$ diagram.

Remark

The ambient 3-manifold Y of a $(1,1)$ knot is either S^{3}, a lens space $L(p, q)$, or $S^{1} \times S^{2}$. In this talk, we only consider $Y=S^{3}$ or $Y=L(p, q)$.

$(1,1)$ knots

Proposition (Parameterization, Goda, Matsuda, and Morifuji '05)

$(1,1)$ diagrams are parameterized by $p, q, r, s \in \mathbb{N}$ with $2 q+r \leq p$ and $s<p$.

Not good parameterization:

$(1,1)$ knots

Fact

For $a>2 b>0$, the 2-bridge knot $\mathfrak{b}(a, b)$ is the $(1,1)$ knot $(a, b, a-2 b, 0)$.

Table of Contents

(1) Preliminaries: 2-bridge knots and $(1,1)$ knots
(2) Constrained knots: parameterization and classification
(3) More properties: instanton knot homology, hyperbolic manifolds

Constrained knots

Theorem (Parameterization, Y. '20)

Any constrained knot can be represented by $C(p, q, l, u, v)$, where $p>0$, $q \in[1, p-1], l \in[1, p], u>0, v \in[0, u-1], u$ is odd, $\operatorname{gcd}(p, q)=\operatorname{gcd}(u, v)=1$.

Theorem (Classification, Y. '20)

For $K_{i}=C\left(p_{i}, q_{i}, l_{i}, u_{i}, v_{i}\right)(i=1,2)$ with $p_{i}>0, l_{i}>1$ and $u_{i}>2 v_{i}>0$, they represent the same knot if and only if

$$
\begin{gathered}
p_{1}=p_{2}=p, \quad q_{1} q_{2} \equiv 1 \quad(\bmod p), \\
l_{1}, l_{2} \in\{2, p\}, \quad\left(l_{1}, u_{1}, v_{1}\right)=\left(l_{2}, u_{2}, v_{2}\right) .
\end{gathered}
$$

Constrained knots
For a lens space $L\left(p, q^{-1}\right)$, let α_{0} and β_{0} be two curves on T^{2} with slopes 0 and p / q^{-1}. Let $\alpha_{1}=\alpha_{0}$ and let β_{1} be a curve with $\beta_{1} \cap \beta_{0}=\emptyset$. Set $z, w \in T^{2}-\alpha_{0} \cup \beta_{0} \cup \beta_{1}$. Define a constrained knot by $\left(T^{2}, \alpha_{1}, \beta_{1}, z, w\right)$.

Constrained knots

Cut the diagram along β_{0} and glue along α_{0} :

Constrained knots

Theorem (Parameterization, Y. '20)

Any constrained knot can be represented by $C(p, q, l, u, v)$, where $p>0$, $q \in[1, p-1], l \in[1, p], u>0, v \in[0, u-1], u$ is odd, $\operatorname{gcd}(p, q)=\operatorname{gcd}(u, v)=1$.

$$
\begin{aligned}
& C(5,3,2,3,1) . \\
& p=5=\text { number of domains } \\
& q=3: D_{1} \rightarrow D_{1+q} \\
& l=2: z \in D_{1}, w \in D_{l} \\
& u=3=\mid \beta_{1} \cap\left\{\text { subarc of } \alpha_{1}\right\} \mid \\
& v=1=\text { number of rainbows }
\end{aligned}
$$

Constrained knots

Theorem (Classification, Y. '20)

For $K_{i}=C\left(p_{i}, q_{i}, l_{i}, u_{i}, v_{i}\right)(i=1,2)$ with $p_{i}>0, l_{i}>1$ and $u_{i}>2 v_{i}>0$, they represent the same knot if and only if

$$
\begin{gathered}
p_{1}=p_{2}=p, \quad q_{1} q_{2} \equiv 1 \quad(\bmod p), \\
l_{1}, l_{2} \in\{2, p\}, \quad\left(l_{1}, u_{1}, v_{1}\right)=\left(l_{2}, u_{2}, v_{2}\right) .
\end{gathered}
$$

Remark

The red conditions can be explained by the following facts.

Constrained knots

Fact

- $C\left({ }_{1}, 0,1, u, v\right)$ is the 2-bridge knot $\mathfrak{b}(u, v)$;
- $C(p, q, l, 1,0)$ consists of simple knots in lens spaces studied by Rasmussen, Hedden, et al. (related to Berge's conjecture).

Constrained knots

Fact

- $C(1,0,1, u, v)$ is the 2-bridge knot $\mathfrak{b}(u, v)$;
- $C(p, q, l, 1,0)$ consists of simple knots;
- $C(p, q, 1, u, v)$ is a connected sum of a 2-bridge knot and a core knot in a lens space.

Constrained knots

Fact

- $C(1,0,1, u, v)$ is the 2-bridge knot $\mathfrak{b}(u, v)$;
- $C(p, q, l, 1,0)$ consists of simple knots;
- $C(p, q, 1, u, v)$ is a connected sum of a 2-bridge knot and a core knot in a lens space;
- $C(p,-q, l, u,-v)$ is the mirror knot of $C(p, q, l, u, v)$.

Remark

We only need to consider $(p, q) \neq(1,0),(u, v) \neq(1,0), l \neq 1, u>2 v>0$.

Constrained knots

Theorem (Classification, Y. '20)

For $K_{i}=C\left(p_{i}, q_{i}, l_{i}, u_{i}, v_{i}\right)(i=1,2)$ with $p_{i}>0, l_{i}>1$ and $u_{i}>2 v_{i}>0$, they represent the same knot if and only if

$$
\begin{gathered}
p_{1}=p_{2}=p, \quad q_{1} q_{2} \equiv 1 \quad(\bmod p), \\
l_{1}, l_{2} \in\{2, p\}, \quad\left(l_{1}, u_{1}, v_{1}\right)=\left(l_{2}, u_{2}, v_{2}\right) .
\end{gathered}
$$

Remark

- $C(5,3, l, 3,1) \cong C(5,2, l, 3,1)$ for $l=2,5$;
- $C(5,3, l, 3,1) \not \approx C(5,2, l, 3,1)$ for $l=3,4$;
- There is no known classification of $(1,1)$ knots.

Constrained knots

Idea of necessary part: compute knot Floer homology $\widehat{H F K}$ defined by Oszváth and Szabó, Rasmussen. For $K=C(p, q, l, u, v) \in Y=L\left(p, q^{-1}\right)$,

$$
\widehat{H F K}(Y, K)=\bigoplus \widehat{H F K}(Y, K, \mathfrak{s}) \cong \mathbb{Z}^{\left|\alpha_{1} \cap \beta_{1}\right|}
$$

$$
\left|\operatorname{Spin}^{c}(Y)\right|=\mid 1 t_{1}\left(Y ; \operatorname{Sin}^{c}(Y) \mid=P\right.
$$

$$
\begin{aligned}
& \widehat{H F K}(Y, K, \mathfrak{s}) \cong \\
& \left\{\begin{array}{l}
\widehat{H F K}(\mathfrak{b}(u, v)) \\
\widehat{H F K}(\mathfrak{b}(u-2 v, v))
\end{array}\right.
\end{aligned}
$$

Constrained knots

Theorem (Oszváth and Szabó '03)

For any alternating knot $K \subset S^{3}, \widehat{H F K}(K)$ (with mod 2 Maslov grading and Alexander grading) is determined by its Alexander polynomial $\Delta_{K}(t)$.

Remark

For an alternating knot K, coefficients of $\Delta_{K}(t)$ are alternating. Hence

$$
\left|\Delta_{K}(-1)\right|=u \text { for } K=\mathfrak{b}(u, v) .
$$

Constrained knots

Summary

- Compare $\left|\Delta_{K_{i}}(-1)\right|$. We have $u_{1}=u_{2}, u_{1}-2 v_{1}=u_{2}-2 v_{2}$;
- Compare numbers of spin^{c} structures with $\left|\Delta_{K_{i}}(-1)\right|=u$. We have $l_{1}=l_{2}$;
- Remain to compare $K_{1}=C(p, q, l, u, v)$ and $K_{2}=C\left(p, q^{-1}, l, u, v\right)$.

Remark

- $\left[K_{i}\right] \neq 0 \in H_{1}\left(L\left(p, q^{-1}\right) ; \mathbb{Z}\right) \cong \mathbb{Z}_{p}$;
- For p prime, compare $\left[K_{1}\right]$ and $\left[K_{2}\right]$. We have $l \in\{2, p\}$.

Constrained knots

Idea of sufficient part: construct an isomorphism of $\pi_{1}\left(Y-N\left(K_{i}\right)\right)$.

Theorem (Waldhausen '68)

Suppose $M_{i}(i=1,2)$ are Haken manifolds that are knot complements of K_{i}. If there is an isomorphism $\psi: \pi_{1}\left(M_{1}\right) \rightarrow \pi_{1}\left(M_{2}\right)$ that sends meridian to meridian, longitude to longitude, then K_{1} and K_{2} are equivalent.

Table of Contents

(1) Preliminaries: 2-bridge knots and $(1,1)$ knots
(2) Constrained knots: parameterization and classification
(3) More properties: instanton knot homology, hyperbolic manifolds

Instanton knot homology

For a knot K in a 3-manifold Y with $[K]=0 \in H_{1}(Y ; \mathbb{Q})$, Kronheimer and Mrowka define a vector space $K H I(Y, K)$ over \mathbb{C} called instanton knot homology. The definition is based on sutured manifolds studied by Gabai, Juhász, et al. For gradings, Kronheimer and Mrowka, and then Zhenkun Li, study the $\mathbb{Z} \oplus \mathbb{Z}_{2}$ grading on $K H I$ by Seifert surface of K. Baldwin and Sivek study the naturality of $K H I$.

Conjecture (Kronheimer and Mrowka '10)

For a knot K in a 3-manifold Y with $[K]=0 \in H_{1}(Y ; \mathbb{Q})$, we have

$$
K H I(Y, K) \cong \widehat{H F K}(Y, K) \otimes \mathbb{C} .
$$

Instanton knot homology

Theorem (Oszváth and Szabó '04 for $\widehat{H F K}$, Lim '09, Kronheimer and Mrowka '10 for KHI)
For a knot K in S^{3}, graded Euler characteristics $\chi(\widehat{H F K}(K))$ and $\chi(K H I(K))$ both equal to the Alexander polynomial $\Delta_{K}(t)$ (up to sign).

Remark

From the grading, we have $K H I(Y, K)=\bigoplus_{i \in \mathbb{Z}_{2}, j \in \mathbb{Z}} K H I_{i}(Y, K, j)$. The graded Euler characteristic $\chi(K H I(Y, K))$ is defined by

$$
\sum_{j \in \mathbb{Z}}\left(\operatorname{dim} K H I_{0}(Y, K, j)-\operatorname{dim} K H I_{1}(Y, K, j)\right) \cdot t^{j}
$$

Instanton knot homology

Theorem (Li and Y. '21)

For a knot K in a 3-manifold Y with $\operatorname{Tors} H_{1}(Y-N(K), \mathbb{Z})=0$, we have

$$
\chi(K H I(Y, K))=\chi(\widehat{H F K}(Y, K))(\text { up to sign }) .
$$

Remark

- By work of Friedl, Juhász, and Rasmussen, the right hand can be calculated by $\pi_{1}(Y-N(K))$ (related to Turaev torsion).
- The homology condition is because KHI doesn't have a decomposition with respect to torsion spin^{c} structures.

Instanton knot homology

$\chi(K H I(Y, K))$ provides a lower bound of $\operatorname{dim} \operatorname{KHI}(Y, K)$. For the upper bound, we have the following theorem.

Theorem (Li and Y. '20, Baldwin, Li, and Y. '20)

For a $(1,1)$ knot K in $Y=S^{3}$ or $Y=L(p, q)$, we have

$$
\operatorname{dim} \widehat{K H I}(Y, K) \leq \operatorname{dim} \widehat{H F K}(Y, K) .
$$

Remark

In general, we show $\operatorname{dim} K H I(Y, K) \leq \operatorname{dim} \widehat{C F K}(Y, K)$. For $(1,1)$ knots,

$$
\operatorname{dim} \widehat{H F K}(Y, K)=\operatorname{dim} \widehat{C F K}(Y, K)=|\alpha \cap \beta| .
$$

Instanton knot homology

For any constrained knot $K \subset Y$ with $H_{1}(Y-N(K), \mathbb{Z}) \cong \mathbb{Z}$, we know $\widehat{H F K}(Y, K)$ is totally determined by $\Delta_{K}(t)$.

Corollary

For a constrained knot K with $H_{1}(Y-N(K), \mathbb{Z}) \cong \mathbb{Z}$, we have

$$
\operatorname{dim} K H I(Y, K)=\operatorname{dim} \widehat{H F K}(Y, K) .
$$

Remark

For $K \subset Y=L(p, q)$, we have $H_{1}(Y-N(K), \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}_{d}$ for $d \mid p$.
In progress: remove the homology condition.

Instanton knot homology

Definition

A rational homology sphere Y is called an L-space if

$$
\operatorname{dim} \widehat{H F}(Y)=\left|H_{1}(Y ; \mathbb{Z})\right| .
$$

This is a generalization of lens spaces. A knot $K \subset Y$ is called an L-space knot if a Dehn surgery on K gives another L-space.

Theorem (Oszváth and Szabó '05 for $Y=S^{3}$, J. Rasmussen and S. D. Rasmussen '17 for general Y)

For any L-space knot K in Y with $H_{1}(Y-N(K), \mathbb{Z}) \cong \mathbb{Z}$, we know $\widehat{H F K}(Y, K)$ is determined by the Alexander polynomial $\Delta_{K}(t)$.

Instanton knot homology

Corollary

For a $(1,1)$ L-space knot K in S^{3} or $L(p, q)$, if $H_{1}(Y-N(K), \mathbb{Z}) \cong \mathbb{Z}$,

$$
\operatorname{dim} K H I(Y, K)=\operatorname{dim} \widehat{H F K}(Y, K) .
$$

Remark

Torus knots admit lens spaces surgeries (Moser). Torus knots are $(1,1)$ knots. Hence the dimension equation holds for any torus knot.

Instanton knot homology

Greene, Lewallen, and Vafaee provide a graphical way to check if a $(1,1)$ knot is an L-space knot.

Recently, Zipei Nie gives a braid diagram of $(1,1)$ L=space knot in S^{t} baseg $l o n$ the above work.

hyperbolic manifolds

Consider orientable hyperbolic manifold M with $\partial M=T^{2}$. Snappy program provides a list of simple hyperbolic manifolds (with at most 9 ideal tetrahedra).

Based on Dunfield's census of exceptiohal fillings, we can verify 21922 (in 59068) manifolds are complements of constrained knots. The full list can be found at https://doi.org/10.7910/DVN/GLFLHI or my homepage faniel.wiki/about/.

hyperbolic manifolds

Name	Slope+($p, q, l, u, v)$
m003	$(1,0)+(10,3,3,1,0),(-1,1)+(5,4,5,3,1),(0,1)+(5,4,5,3,1)$
no m004	$(1,0)+(1,0,1,5,2)$
moos m006	$(0,1)+(15,4,2,1,0),(1,0)+(5,3,4,3,1)$
rot m007	$(1,0)+(3,1,2,3,1)$
ariatable 009	$(1,0)+(2,1,2,5,2)$
orientrym010	$(1,0)+(6,5,6,3,1)$
m011	$(1,0)+(13,3,3,1,0),(0,1)+(9,4,9,3,1)$
m015	$(1,0)+(1,0,1,7,2)$
$m 016$	$(0,1)+(18,5,3,1,0),(-1,1)+(19,7,2,1,0)$
$m 017$	$(0,1)+(14,3,5,1,0),(-1,1)+(21,8,21,1,0),(1,0)+(7,5,6,3,1)$
$m 019$	$(0,1)+(17,5,4,1,0),(1,1)+(11,7,11,3,1),(1,0)+(6,5,5,3,1)$
$m 130$	$(1,0)+(16,3,6,1,0),(0,1)+(16,7,16,3,1)$
m135	Not from any constrained knot
\cdots	...

hyperbolic manifolds

Suppose $K=C(p, q, l, u, v) \subset Y$ and $M=Y-\operatorname{int} N(K)$. Recall that if $l=1$, then K is a connected sum of a 2-bridge knot and a core knot of a lens space. Hence M is not hyperbolic.

Theorem (Y. 20)

If M is Seifert fibered (hence not hyperbolic), then $v= \pm 1$.
Conjecture (Y. 20)
If $l>1$ and $v \neq \pm 1$, then M is hyperbolic.

Remark

This conjecture holds for $p \leq 10, u<20$ by calculations based on SnapPy.

Constrained knots in lens spaces

Thanks for your attention.

